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On Rossby waves modified by basic shear, and 
barotropic instability 
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The eigenvalue problem of Kuo governing the linear stability of a parallel zonal flow 
of an inviscid incompressible fluid on a ,!-plane is treated in this paper. First, a 
synthesis of the known properties of the normal modes is presented, as a short 
summary. The rest of the paper is a study of the properties of one of the classes of 
stable modes, namely Rossby waves modified by the basic shear. These modes are 
found as the solution of the inverse of a regular Sturm-Liouville problem. Several 
asymptotic results for small and for increasing values of the basic shear (i.e. 
equivalently for large and decreasing values of ,!) are found for quite general velocity 
profiles. These are illustrated by some numerical calculations of the wave 
characteristics for a few particular basic velocity profiles. 

1. Introduction 
I n  1939 Rossby devised the P-plane approximation for motion of a thin layer of 

fluid on a rotating sphere, and thence discovered the waves that now bear his name. 
It is less well known that in this classic paper he also recognized the nature of 
barotropic instability, and found the linearized vorticity equation that governs the 
instability. Ten years later Kuo developed the work on barotropic instability, posing 
and treating the appropriate eigenvalue problem. The topics of Rossby waves and 
of barotropic instability have since been extensively treated in the literature, but 
almost as if they were entirely separate topics. We shall emphasize that the shear 
of a basic flow modifies the Rossby waves substantially, and, if i t  is strong enough, 
makes them become modes of instability. The development and substantiation of this 
is the chief aim of this paper. Nonetheless, the topics of Rossby waves and barotropic 
instability are fundamental to so much of modern thought in meteorology and 
oceanography that it is useful to summarize and synthesize the known results before 
extending them. The non-specialist reader may find the essential old and new results 
here and in $ 7 .  

I n  Kuo’s (1949) classic model of linear barotropic instability, a basic zonal stream 
of an inviscid incompressible fluid with velocity U = V(y)i is supposed to flow 
between rigid walls, a t  latitudes y = y1 and y2, say. Here we take Cartesian 
coordinates with unit vector i parallel to the x-axis. Also we take y1 < y2, and may 
take y1 = - co , y2 = 00, or both. Then a normal mode of zonal wavenumber a may 
be shown to be governed by the following eigenvalue problem : 

a2 q5 = 0;  
U - c  ” I 

t Present address: British Gas, London Research Station, Michael Road, London 6W6 2AU. 
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The derivative /3 of the Coriolis parameter will be taken as a constant. If y1 or yz is 
infinite, we replace (2) by the condition that 

4 is bounded as y + y1 or yz. (3) 

It is assumed here that a two-dimensional small perturbation has streamfunction 
$'(z, y, t )  = Re ($(y) eia(z-ct)}, where the complex phase velocity c = c, + ici is to be 
found as an eigenvalue so that the mode is unstable if and only if aci > 0. The flow 
is unstable if a t  least one mode is unstable. 

Equation (1)  is equivalent to the vorticity equation for the disturbance found by 
Rossby (1939), but is called the Kuo equation, because Kuo (1949) posed the 
eigenvalue problem, found some of its general properties, and solved i t  for some 
particular flows. Others have found further general and particular properties of 
barotropic instability. Much of this work has been described by Kuo (1973) in a 
survey. Nonetheless, the new systematic summary below may be helpful in unifying 
disparate results. 

For a given basic state (i.e. for given U ( y ) ,  yl, yz and p > 0 ) ,  it is found that each 
mode of zonal wavenumber a belongs to one of the following eight classes, any or 
many of which may be empty. 

Bound states. These are defined, by analogy with wave mechanics, as modes for 
which jy' q5z < co, so that either both y1 and y2 are finite, or q5 decays exponentially 
a t  infinity like 

Y l  

exP[-{a2-pl(U~,-c)}tlYll, 

when there exists U,, = lim U(y). 
y + + m  

(i) A finite number of non-singular unstable modes with eigenvalues c belonging 
to eigenfunctions 4. A necessary (but not sufficient) condition for the existence of 
these barotropically unstable modes is that U" = p somewhere in the domain of flow 
(Kuo 1949). The eigenvalues lie inside the semicircle with inequalities 

in the complex c-plane, where 

Urn = min U ( y ) ,  U,  = max U ( y ) ;  
Y l Q Y S Y 2  Y l S Y Q Y 2  

also C, < UM (Pedlosky 1964, p. 212). 
(ii) An equal number of non-singular damped stable modes, whose eigenvalues and 

eigenfunctions are complex conjugates of corresponding members of the first class 
of unstable modes. 

(iii) A finite number of marginally stable modes. (There are usually none of these 
because i t  is unlikely that a given pair of values of a and p lies on a stability 
boundary.) They are limits of members of the above two classes as ci+O. Their 
eigenvalues satisfy the inequalities Um-/3/2az < c < U,. Their eigenfunctions in 
general have logarithmic singularities a t  the critical latitudes where U = c ;  if, 
however, a mode has only one critical latitude then 4 is non-singular and U" = p a t  
that latitude. One of these modes may exceptionally be a coincident pair of modes 
of the next class (see also $2). 

(iv) A countable number (finite or infinite) of non-singular stable modes (cf. Dikiy 
& Katayev 1971). To make the classification unique, we require that these modes are 
not marginally stable. These have c < Urn, Pedlosky (1964, p. 21 1 )  having shown that 
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there is no non-singular mode with c > U,: their group velocity may, however, lie 
within the range of U. They exist only when U” < /3 somewhere in the flow, and may 
be identified as Rossby waves modified by the basic shear. 

(v) A continuum of singular neutrally stable modes with Urn < c < U,. These 
have eigenfunctions with discontinuous derivatives a t  critical latitudes where U = c .  
This continuous spectrum is associated with disturbances that grow or decay 
algebraically as time increases. Little is known about these modes (but see Warn & 
Warn 1978). 

Unbound states. At an infinite ‘boundary’ one may replace condition (2) by 
condition (3). Then there exist unbound states, so defined that ji:42 = CO, of 
physical interest. They occur if and only if (a )  y1 = - 00, yz = co or both; and (b)  
/ 3 / ( U , , - c )  > a2, and so are stable. Then any mode may be resolved as the 
superposition of solutions of scattering problems, in each of which a wave of unit 
amplitude is incident from y = f co and may give rise to a transmitted wave and a 
reflected wave. There is total reflection sometimes, for example if /3/( U ,  - c) > a2 and 
either y1 is finite or /3/( U-, -c) < a2. 

(vi) A continuum of non-singular neutral modes with c < Urn. For these modes 
wave-action flux is conserved. 

(vii) A continuum of singular neutral modes with Urn < c < U,. Wave action of 
these modes may be generated or absorbed by interaction with the basic flow a t  the 
critical latitudes where the eigenfunction is singular. Over-reflection is possible (cf. 
Lindzen & Tung 1978), i.e. the wave-action flux of the reflected wave may be greater 
than that of the incident wave. 

(viii) A finite number (usually zero) of singular marginally stable modes. These are 
limits of modes of classes (i) and (ii) as ci -+ 0 and of modes of class (vii). They have 
infinite over-reflection. 

The distribution of modes among these classes varies with the parameters a and 
/3 as well as the basic flow. So it is important to  know the properties of the modes 
as a and /3 vary. Increase of /3 promotes stability in general but not, one presumes, 
always; certainly a flow is stable if 

/3 > max U”(y) .  

Similarly, an increase of a promotes stability of the modes. This paper is chiefly 
concerned with the properties of modified Rossby waves, i.e. of the neutrally stable 
modes of class (iv), as a and /3 vary and is inspired by the work of Dikiy & Kataev 
(1971) on Rossby-Haurwitz waves on a sphere. We shall see that in general the wave 
velocity decreases monotonically to minus infinity as /3 increases, and increases 
monotonically to Urn as a increases. It may be seen by dimensional analysis that  
more-appropriate parameters are aL and /3L2/V, if an overall lengthscale L and 
velocity scale V of dynamically similar basic flows may be chosen. Thus the limit as 
/3 -P 0 is equivalent to the limit as V -P co, in which the problem reduces to the 
Rayleigh stability problem (see e.g. Drazin & Reid 1981, chap. 4). Also in the limit 
as either /3 + co or V -P 0 the problem reduces to that of classic Rossby waves in the 
absence of a basic flow (see $3). 

First, a few general properties of the eigenvalue relation will be presented in $2.  
The asymptotic properties of the modified waves as ~3 + 00, which is equivalent to 
the limit as c + - co, are found in $ 3  for general profiles. This gives the first-order 
correction to a Rossby wave’s velocity and spatial structure due to the basic shear. 
The rest of the paper is a study of the modified waves as p decreases from infinity, 

Y l < Y < Y ,  
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i.e. as c increases from minus infinity to Urn. The dispersion relation and the spatial 
structure of the waves are shown to be substantially modified by the basic shear. The 
wave characteristics for an unbounded parabolic basic velocity profile and those for 
a semi-bounded linear basic velocity profile are given respectively in appendices A 
and B.t These two special problems are of intrinsic interest but seem to be of little 
direct practical importance. They are, however, important components of the 
asymptotic solutions for quite general velocity profiles in 334 and 5 respectively in 
the limit as c Urn. Some numerical results for a few special basic flows are presented 
in 36; these results both illustrate and are interpretable in the light of the preceding 
general results. Thereby the paper draws a picture of the wave characteristics as a 
whole. 

2. The dispersion relation 
Equation ( 1 )  and the boundary conditions (2) form a regular Sturm-Liouville 

problem to determine the eigenvalues P of the modified Rossby waves for any given 
values of a2 2 0 and c < Urn. It follows that there exist eigenvalues PI < p2 < . . . 
belonging to a complete set {$n) of eigenfunctions such that 4% has n- 1 zeros between 
the boundaries. Further, by the Sturmian theory of oscillations, Pn increases as a2 
increases. 

If a2 = 0 and p = 0, then any solution of ( 1 )  may be expressed as 

$6 = ( U - c )  (U-c)-Zdy. i 
Now c < Urn. Therefore no solution can vanish at both boundaries. This conclusion 
is valid afortiori if a2 > 0. It follows that P, > 0 for all a2 >, 0, for all n, and for all 
basic flows. 

The above demonstrates that  P is a single-valued function of a,  n and c .  However, 
the physical nature of the problem requires us to find c as a function of a,  p and n. 
To examine this function and see that it is not always single-valued, denote the 
eigenvalue relation, i.e. the dispersion relation of the waves, by the form 

F(a2 ,  p, c )  = 0, 

for each value of n. Suppose then that this relation is satisfied by the particular set 
of values a:, Po and co with eigenfunction Therefore one may plausibly expand 

0 = w2, P, c )  - F ( 4 ,  P o ,  co) 

where the subscript zero denotes evaluation a t  (a;, Po, c o ) .  Therefore 

{ [ El0 (a2 - 4)  + [ 3 (P - Po)) 
as a2-+a& P-+p0,  (5) 

0 

r a m  c-co - - 

t These appendices may he obtained from the authors or from the  Editorial Office of the Journal 
of Fluid Mechanics. 
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provided that [dF/dc],  =/= 0; and 

- -  
2 I ac2 1, 

provided that [dF/dc],  = 0 and [a2F/dc2],  $- 0. 
Equation ( 5 )  implies that c is a single-valued function of a2 and /3 as /3 decreases 

from infinity until [8F/&],  = 0 or F ceases to be differentiable, because c is 
single-valued when P is large (see 53). This onset of a multiplicity of values of c will 
be exemplified in 56. Further, (6) shows that instability occurs with purely imaginary 
values of c-co near real values of a:, Po and c, if [dF/ac],  = 0. Thus a single-valued 
c for given n is associated with stability and multi-valued c with the onset of 
instability. Note that c < U ,  at the onset, as found numerically by Delblonde (1981) 
for the Bickley jet. 

The ratios of the partial derivatives of F can be found by use of the solvabiIity 
condition for @ = q5-9,. If q5 and q5, satisfy the eigenvalue problem (1) and ( 2 )  for 
their respective eigenvalues, then 

@ = 0 (Y = Y1,YZ) (8) 

in the limit as a2 + a:, /3 +Po and c + c,. The operator on the left-hand side of (7 )  
is self-adjoint, so that the solvability condition for @ is the usual one that the right-hand 
side is orthogonal to the solution q5, of the homogenous problem. This gives 

r z { ( a z - a : ) - H +  u - c ,  (U-C,)Z u"-Po ( c - c , ) } ~ : d y + o .  
Y1 

(9) 

Therefore 

as a2 + a: and /3 + Po for fixed n, if 

as is found in ( 5 ) .  This gives the group velocity as 

If 

then 

/3 > max U"(y), 
YlQYGYZ 

15 E L M  124 
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and we may further deduce that c increases as /3 decreases and as a2 increases, and 
that cg > c. 

Also, if [aF/dc] ,  = 0,  i.e. if 
Yz Po- U" s,, ( U -  c o ) 2  $m = O ,  

then the Liapounov-Schmidt method (cf. Banks & Drazin 1973, $6) may be used to  
express (6) in terms of explicit integrals of $o etc. 

3. Modified Rossby waves for large P 
In  this section we consider only bounded flows. Then one may take y 1  = -T and 

yz = T without loss of generality, by making a linear transformation of the variable 
y if necessary. 

Formally letting P-  00 in the eigenvalue problem ( 1 )  and ( 2 ) ,  one finds that) 
c /P  + constant, where 

(12) $ " - ( a 2 + P / c ) $  = 0, 

$ = 0  ( y = + n ) .  
Therefore 

(n= 1 , 2 , . .  

say, the eigenfunction $no having n - 1 zeros between the rigid boundaries at y = f T .  

This is the solution for a classic Rossby wave in the absence of a basic flow. 
Coaker (1980) has shown that the eigensolution with n - 1 zeros may be expanded 

as 

as /3 + co, uniformly in y (but not in a or n). Substitution of these series into the 

c = c  = -  n P C n o + C n l + P - 1 C n 2 + . . . ) ,  $ = $n = $ n o + P - ' $ n l + . . .  (15a, b )  

problem (1) and ( 2 )  gives (14) a t  the first approximation. At the next approximation 
one finds that 

(16) Ln$n1 $El +&'$,I 

= C i i ( C n o  U"-Cn1+ U )  $no, (17)  

$n1 = 0 (y = _+m). (18) 

Much as we deduced the condition (9) from (7) and (8), one can show that the 
solvability condition of (17)  and (18) is that 

0 = j-1 c,,"(cno U" -cnl + U )  $i0 dy. 

Therefore J-: (U+cno u") $iody 
C n 1  = = Lj71 (u+ cno u") sinZh(n+ y) dy. (19) 

m -71 J-; $iodY 

This gives the first-order correction to the Rossby-wave velocity due to the basic flow. 
One can proceed similarly to find $nl ,  cn2 etc. in turn (Coaker 1980). 

4. The limit as c T U,: velocity profiles with a simple minimum 
We noted in $2 that  the Sturm-Liouville problem ( 1 )  and (2) for - 00 < c < Urn 

and a2 3 0 has an infinity of eigenvalues P, > 0. I n  $3  we found Pn as c - 00. I n  



Rossby waves modified by basic, shear 445 

appendices A and B t  we consider the basic flows with an unbounded parabolic profile 

U(y) = ;u;yz (-00 < y < a), (20)  

and with a semibounded linear profile 

U(y) = u;y (0 d y < 00) 
respectively, and use the method of matched asymptotic expansions to find the 
modified Rossby waves as c Urn ( =  0). Next we shall use those results to find p, 
as c f Urn for quite general basic velocity profiles. I n  this latter limit, ( 1 )  becomes 
nearly singular, and the singularity will be seen to dominate the problem. 

First, suppose that U has a simple global minimum : then there exists a unique point 
yrng(y1, y,) such that Urn = U(ym), U k  = U’(y,) = 0, U k  = U”(ym) > 0 and 

It will be seen that this case is similar to that of the parabolic profile (20)  of 
appendix A in the limit as c t Urn, because the singularity is similar. So we shall use 
the method of matched asymptotic expansions, borrowing or modifying results of 
appendix A where appropriate. 

urn < U(Y) if Y E  [YI, ~ z l  and Y * Yrn. 

In  the formal limit as c f Urn, ( 1 )  becomes the outer equation 

$:+( --a,+--) p- U” $o = 0, 
u- urn 

valid as an approximation for fixed Y E  [yl, y,) or (ym, y,]. It follows from the 
theory of regular singularities of ordinary differential equations that, if 
u _= (t-2/3/U&)? + O , &  then 

for some constants D, and E + .  The ratio D-/E- is determined (in principle) by 
integration of the outeFequation (21) and use of the boundary condition ( 2 )  a t  y = yl. 
Likewise DJE+ is independently determined by use of ( 2 )  a t  y = yz. 

In  general the outer equation (21)  is singular a t  ym. If v = i and Urrr(ym) = 0, 
however, then i t  is regular although relations (22)  are still valid. If u = $ and 
U”’(ym) =k 0, or if v = 0, then logarithmic terms may arise in these relations. 

We need, in general, an inner solution uniformly valid near y = ym as c t  Urn in 
order to find the connection formula that relates D+/E, to  D-/E- and hence 
determines the limit of the eigenvalue, lim p, = B,, say. Taking appendix A as a 

guide, we let Y = [U&/2( Um-c)]i (y- ym), transform the independent variable of (1) 
to Y ,  let c f Urn for fixed Y ,  and deduce (A 17)  in the limit. Then the solution (A 18) 
follows in the present case and may be rewritten equivalently as 

CT Urn 

$i( Y )  = ( Y + 1): {BP?g+,,(i Y )  + B *Pl;+,( - i Y)} ,  (23)  

in terms of associated Legendre functions. 
Consider first the special case when U is an even function, y1 = - y, and ym = 0. 

Then we may use the boundary conditions (A 5 )  that  4’ = 0 or q5 = 0 at y = 0 and 
( 2 )  a t  y = y2, considering the interval y1 < y < 0 only implicitly by use of the evenness 
or oddness of the eigenfunctions $, for odd and even n respectively. Thus i t  follows 
that 

$i( Y )  = B( Y 2 +  i);{P’g+”(iY)+Pl:+,(-iY)}, 

t See footnote on p. 442. 
15-2 
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respectively. It may now be deduced, similarly to  the deduction of asymptotic 
relation (A 19), that 

respectively, unless either v2 < 0 or one of cos+n(i+v), sin+n(i+v) and l/r(v-+) 
vanishes. Thus the limiting eigenvalues B,  are determined in general as *the 
eigenvalues (if any) ofthe outer equation (21) for 0 < y < yz such that q50 = 0 a t  y = y2 
and do - constant x (y-ym)$+” as ylym, i.e. such that E’,/D, + 0 as clUm. 

Further, on matching to the next approximation, we find that 

respectively as y J  ym, p-+ B,, where v,  = (#-2B, /Uh) i .  Here we have used the 
matching relation 

lim q5i( Y )  - lim q50(y) as c t Urn 
YT YlYm 

to determine D, in terms of B to the first approximation and assumed that D ,  and 
E+ have Taylor series in powers of P-B,. The coefficients of the terms proportional 
to P- B,  are the constants D,, and E,, after normalization, which we may regard 
as being known in principle on integration of the outer problem. Now, matching the 
coefficients of (y- y,)?-“n in this expression of q50 with the expression (24) for $i, we 
deduce that in general 

Therefore ti, -c, - a ,  ID- B,IIIVn as /3 + B, < 3l-J; (25)  

for n = 1 ,  2 , .  . . , p ,  where a ,  are some positive constants, which depend on the profile 
and 2. 

The numberp of these modes is finite because the problem has only a finite number 
of eigenvalues B,  < {U& to ensure that v,  is real. This number may be zero and indeed 
p = 0 for the unbounded parabolic profile of appendix A. The integer p depends not 
only on the profile but also on 2, and is a monotone decreasing function of d. 

In addition, there exists for a general profile of this section an infinity of modes 
similar to those found for an unbounded parabolic profile. Their structure and 
deduction follows much as in appendix A. It follows that 

cn - urn -b,e-(n+l-q)nlt’ as /j’Jtuk (26) 

for n > q ,  where b ,  are some positive constants, which depend on the profile and a2, 
and q is some integer not less than p. 

Various special cases for which the general argument leading to (25)  is invalid have 
been ignored hitherto: when v ,  = 0 or 4, when E,, happens to vanish, when 
cos+r(++ v , ) ,  sinin(&* v,) ,  l/r( v,-+) or l/r( - v n )  happen to vanish. It is lengthy 
to analyse each of the special cases, so i t  seems best to summarize them by noting 
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that we have found one possibility in addition to the asymptotic relations (25) and 
. -  

(26): namely that 
c, - Urn - d,@- Uk)P as p + U;, 

for some integer n and constants d,, p > 0 in the special case when B, = U$ and 
therefore v, = t .  

Also note that we have, for the sake of simplicity and brevity, presented the 
arguments above for even profiles U .  The arguments and their conclusions are similar, 
however, for general profiles with a simple global minimum. Then the outer problem 
for each value of determines the ratios D,/E, and D-/E-. These ratios are 
connected by matching to the inner solution, which may be continued from Y = co 
to Y = - cc to determine first B, and then the asymptotic eigenvalue relation in the 
form (25). Likewise, (26) also follows for general profiles. 

Lastly, we conjecture that,  as for the unbounded parabolic flow of appendix A, 
(26) is also valid as n + 00 or as a2 + co for fixed p and a general profile. 

5. The limit as c t Urn: velocity profiles with a minimum at a wall 
Here we suppose that U attains its global minimum a t  a wall and that the basic 

shear does not vanish at the wall: then either U’(yl) > 0 and U ( y )  > U(yl) if 
Y E  (y1,y2]; or U’(y,) < 0 and U(y) > U(y,) if ye[y1,yz). The two alternatives are 
essentially equivalent, so we may suppose without loss of generality that 
U k  = U’(yl) > 0 and U(y) > U(yl) = Urn if y E (yl, y,]. 

To solve the eigenvalue problem in the limit as c Urn we follow Beaumont (1980). 
To understand the argument i t  may again help to bear in mind that the thin critical 
layer near the wall is the dominant feature of the flow and therefore that the general 
case resembles the semibounded linear profile of appendix B. 

Putting c = Urn formally, we find the outer equation, 

$“,{ -a2+-}$, p- U” = 0, u- Urn 

and the outer boundary condition that 

$0 = 0 (Y = Y2). (29) 

This outer problem is singular at y = yl. The theory of singularities of linear ordinary 
equations, however, gives 

$o(Y) - D(y-y,)+E(y-y,)ln(y-y,) as Y l Y 1 ,  

for some constants D and E whose ratio can be found (in principle) by integration 
of (28) after use of the initial condition (29). 

The exact equation ( 1 )  is, however, not singular a t  yl. So its inner solution valid 
near y = y1 that satisfies the boundary condition (2) a t  y = y1 is of the form 

$i(y) = E’(y-yy1) (30) 

for some constant E’. This conclusion can be deduced more formally by letting c t Urn 
for fixed inner variable Y = UA(y-yl)/(Urn-c). 

In  any event, matching 

lim $i( Y )  - lim $o(y) as c t Urn, 
YT 00 Y l Y l  



448 

we deduce that D + F and E --r 0. It follows that the limiting eigenvalue 

P. G. Drazin, D. N .  Beaumont and S.  A .  Coaker 

B, = lim /3, 
cTUm 

is determined by the outer problem together only with the condition that $,vanishes 
linearly as y 1 yl. 

6. Examples 
Next we present some numerical and analytical results concerning Rossby waves 

modified by a few particular basic flows. These examples are chosen more to illustrate 
the above results for general profiles than for their own sakes. Thereby an overall 
picture of the characteristics of modified Rossby waves will be drawn. 

6.1. Bounded parabolic projile 

First, we follow Coaker (1980) in considering the basic velocity profile with 

(-n < y < 4. 

This flow is stable for all values of /3, by Kuo’s generalization of Rayleigh’s 
inflexion-point criterion. Note that the distribution U is even and y1 = - y2,  so that  
each discrete eigenfunction is either even or odd; in particular, $, is even if n is odd 
and is odd if n is even. On evaluation of the integral (19), (15a) gives 

+++O(p-l)  as p+ 00. c =-- P 2 1  +-{----} 1 
a2+tn2 n2 a2+fin2 n2 

The profile has a simple global minimum at ym = 0, where 

U ,  = 0, U k  = 2/n2 = 0.2026, U g  = 0 and U$ = 0. 

Extensive numerical calculations have been performed, agreeing convincingly with 
asymptotic results (32) as c 1- 00 and (25)-(27) as c f U,. The calculations are 
summarized in figure 1. Coaker (1980) gives some further details, in particular some 

Figure 1 ( a )  indicates that  the asymptotic formula (32) is quite accurate, even when 
/3 is not large, and that its accuracy increases as n decreases for fixed /3. Calculations 
of c1 for several values of a and /3 indicates that the accuracy of (32) increases as a2 
decreases for fixed n. Indeed, when a2 = 0, (32) is very accurate for all values of p;  
(32) gives p + 0.2353 as c1 f 0 instead of the ‘exact’ result /3 = B, = U k  = 0-2026. It 
seems that B, = U k  for a2 a t  least as high as 10 but not for ct2 = 100. When a2 is 
sufficiently large the JWKB approximation suggests that  the solution is, except in 
thin layers near the walls, as if the flow were unbounded, and therefore that the results 
of appendix A are applicable. It follows that the modes are of type (26) with B, = 
if a2 is sufficiently large. Figure 1 ( b )  confirms that c, increases towards U ,  as a2 
increases. 

It seems that there is no mode of type (25) with B, + UA for any values of n 
and a2. 

graphs of $ n ( y ) .  

6.2. Bounded sinusoidal profile 
Coaker (1980) also considered the basic velocity profile with 
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I 
0 

- 
-2.0 -1.0 
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FIGURE 1. U(y) = ( ~ / n ) ~  for -n < y < n. ( a )  The continuous curves give ,f? us. c ,  for a2 = 0 5  and 
n = 1,2 ,  3.Thebrokenline~givec~ = -,f?/(az++nz) + 2 n ~ 2 { ( ~ 2 + ~ z ) ~ 1 - n ~ z } + ~ , i . e .  thesecond-order 
approximation for large /3. Here cl(/3) is of type (25) with B,  = UL = 2nP = 0.2026, and c2 and cg 
are of type (26) with B ,  = $?7; as c, f Urn. ( b )  The continuous curves give a* us. c ,  for /3 = 1 and 
n = 1,2,3.  

This flow is certainly stable for all P > max U" = 1. It can be seen by inspection that 
two eigensolutions of the system (1) and (2) are given by 

c1 = -p, #,(y) = cos+?J (a2 = i), (34a) 

cg = --p, #z(y) = siny (a2 = 0),  (34b) 

for all p. Equations (19) and (15a) give 

c, = -___ P + O ( j )  as /?+a forfixedn, 
a2 + in2 (35)  
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2.0 

P 

{lr; 

1 .o 

0 
1 

2.0 

P 

1 .o 

3 

2.0 

a 

1 .o 

) 



Rossby waves modijied by basic shear 451 

all the coefficients of even powers of /3 in the expansion vanishing because the problem 
is antisymmetric about y = 0. There is a simple global minimum at  ym = -=&, where 
U m = - l ,  U k = 1 ,  U ' ~ = O a a n d U ~ = - l .  

Again, extensive numerical calculations agree well with the analytical and asym- 
ptotic results. The calculations are summarized in figure 2, further details being 
reported by Coaker (1980). The results are qualitatively quite similar to those for the 
bounded parabolic profile. Figure 2 ( a )  gives an example, however, of a mode of type 
(25) as c1 1 Urn with B,  < U k .  Note that the formula (35) for large -/3 happens to 
give the exact result (34) when n = 2 and a2s= 0 (or n = 1 and a2 = i). Figure 2 (b)  
gives cI(/3) for various values of a'. Note that, when a' = 0.5, c1 is not a single-valued 
function of p < 1 and the flow is presumably unstable. Figure 2 (c )  gives the dispersion 
relation for /3 = 2 ;  i t  can be seen that the group velocity vanishes and therefore lies 
within the range of U ;  further, o1 is a single-valued function of a but a is not a 
single-valued function of w1 for all wl. 

6.3. An asymmetric channel flow 

Beaumont (1980) chose the basic velocity profile with 

in order to illustrate the general results for asymptotic profiles. Again extensive 
calculations have been made for this profile, and results found qualitatively similar 
to those for the sinusoidal flow (33) and so serve to confirm that the qualitative results 
do not depend upon any special symmetry of the basic flow. Beaumont (1980) gives 
some details of the numerical results. 

6.4. The Bickleyjet 
Beaumont (1980) also considered the basic profile, 

U(y) = -sech2y (-a < y < a), (37) 

in order to illustrate the wave characteristics of unbounded jets. This jet is in fact 
stable if and only if /3 2 max U" = 2 (cf. Kuo 1973, SVIIB) .  Note again that the 
symmetry of the problem about y = 0 implies that  each non-singular eigenfunetion 
is either an even or an odd function of y. The boundary conditions (2) require that 
a2 + P / c  < 0 in order that the eigenfunction does not grow exponentially a t  infinity ; 
therefore -/3/a2 < c. Also c < Urn, as always. There is a simple global minimum at 
ym = 0, where Urn = -1, U& = 2, U: = 0 and U$ + 0. 

Calculations reveal that the solution 

c z - 1 ,  p=" sa (9-a2), $ = (sechy)~az~tanhy~2-~az,  

found by Howard & Drazin (1964), is a singular limit of the regular first mode as 

FIGURE 2. U(y) = siqy for --n ,< y < n. ( a )  The continuous curves give /3 vs. c, for a2 = 0 and 
n = 1,2,3.  The broken lines give c, = -4,!3/n2, i.e. the second-order approximation for large p. Here 
c, (p)  is of type (25) with Bl = 02874, c&3) is of t,ype (27) with p = 1, B, = U: = 1 ,  and c3(p)  is 
of type (26) with B, = iU: = 1.125 as c t Urn = - 1. ( b )  The continuous curves give pvs. el for a2 = 0, 
0 5  and 1 .  The broken lines give c1 = -/3/(az++:), i.e. the second-order approximation for large p. 
Here cl(/3) is of type (25) as c f Urn with B,(O) = 02874, B1(05) = 0944, and of type (27) with p = 1, 
R , ( l )  = l7: = 1 .  (c) w, = ac, vs. a for /3 = 2 and n = 1, 2. Here c1 = -7.96 and c2 x -2 when 
a = 0, and cg = 0 when a x 0.49 or 099. 
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FIGURE 3. U(y) = -sech2 y for - co < y < co. J3 us. c, for a2 = 3 and n = 1,2 ,3 ,4 .  Here it seems 
tha t  c1 is of type (25)  with p = 4.2, B, = 2, c2 is of type (27) with B, = U A  = 2, c,  is of type (27) 
with p = 3.7, B, = 2, and c4 is of type (26) with B, = i U k  = 2.25 as c, U ,  = -1. 

c1 1 Urn for 0 < a2 < 3. I n  fact, B,(a2) = 2 for 3 < a2 < 96 and perhaps for larger 
values of a2 as well. 

The calculations made are summarized in figure 3 .  The chief new point they bring 
out is how the modified Rossby waves disappear as c 1 - p/a2. The waves exist then 
for 

say, where c, 1 - Bk/a2  as P t  BL with B ]  > BS > . . . > - a2Urn. It seems that BI = co. 
The calculations give B J ( 3 )  M 3.32 and BJ(3)  M 3-02. A few further details are 
reported by Beaumont (1980). The argument of $2 indicates that two modified Rossby 
waves coalesce and lead to instability where the curve c1 has a minimum in figure 
3,  because c1 is a double-valued function of p and a. This supports the work of 
Delblonde (19Sl) ,  who re-examined the instability of the Bickley jet and found a 
modified Rossby mode on the margin of stability at approximately the same values 
of cl, a and p. 

Bn(a2) < p < B i ( a 2 ) ,  

6.5. Bounded linear pro@ 

Beaumont (1980) also considered the basic velocity profile with 

(38) 
Y U ( y ) = -  ( - n < y < 4  
7r 

in order to illustrate the general wave characteristics of profiles with a minimum at  
a wall. However, this flow is stable for all p. Equations (19) and (15a)  now give 

all the coefficients of even powers of p in this series vanishing because of the 
antisymmetry of the problem about y = 0. Here U has its global minimum a t  the 
wall ym = -n, where Urn = - 1  and U A  = l / n .  

The exact solution of ( 1 )  for the profile (38) in terms of confluent hypergeometric 
functions is again possible, as in appendix B. Beaumont has given the eigenvalue 
relation in terms of these functions, but the paucity of tables of them makes the exact 
eigenvalue relation not of much practical use for general values of a2. I n  the particular 
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FIQURE 4. U(y) = y/m for -n < y < 17. (a )  The continuous curves give /3 vs. c, for a2 = 0 and 
n = 1,2 ,3 .  The broken lines give c, = -4P/n2, i.e. the second-order approximation for large p .  ( b )  
The continuous curves give /3 vs. c1 for a2 = 0, 0 5  and 1. The broken lines give c1 = -/3/(az++:) 
i.e. the second-order approximation for large p .  

case when a2 = 0, however, i t  follows that the general solution of ( 1 )  with the profile 

where J1 and 
constants. Beaumont deduced that the eigenvalue relation is 

are the Bessel functions of first order and A and B are arbitrary 

J1(2n[P(1 -c)]&) Y,(2n[P( - 1 -~)]a)-J,(Zn[p( - 1 -c)$) &(2n[P(1 -c)]:) = 0, (40) 

that  i t  agrees with the relation (39) and also that i t  gives 

where jl,n is the nth positive zero of J,. 
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Our extensive numerical calculations are summarized in figure 4. It is verified that 
the asymptotic relations (39) and (41) are accurate in their appropriate domains. Note 
the difference in the behaviour of p as c 7 Urn according to whether the flow has its 
minimum velocity a t  a wall or within the domain of flow. 

Beaumont (1980) has given further numerical results. He has also briefly analysed 
two other profiles with minimum velocities a t  the wall; namely, 

U(y)  = -y2 ( - 1  < y < I), 

U(y) = -e-Y (0 < y < a). 
The results seem to be similar qualitatively to those of the linear profile (38). 

7. Conclusions 
The great detail of the above results makes them difficult for a non-specialist to 

assimilate. Yet the essence of the results can be quite simply extracted and made 
readily digestible as follows. The structure of the problem of Rossby waves and 
barotropic instability as a whole is described briefly in $ 1 ,  and the problem of modified 
Rossby waves, in particular, is treated more intensively in $2. The dispersion relation 
of the waves for general profiles a t  large values of p is derived in $3. I n  particular, 
(15 a )  gives 

c, = -~ p +o(I) as p - + a  
a2 + in2 

for n = 1,2, ..., for all fixed a2 and for all basic flows. As /3 decreases, or rather as 
c increases, for fixed n and a2, there are two general types of asymptotic results 
according to whether the minimum Urn of the basic velocity U occurs within the 
domain of flow or at a wall. 

(i) If the minimum occurs within the domain of flow (and is a simple minimum, 
i.e. U k  > 0) then (25)-(27) give 

( a )  Urn-c,-anl/3-BnJ1I”n as P-+B,<iU& (n= 1,2,  . . . , p ) ;  
( 6 )  U,-c,-d,(P-Uk)p as p+ U k  ( n = p + l , p + 2 ,  . . . 7 q ) ;  
(c) Urn-c, - -b  e-(n+l-Q)n/F as /3JiUA ( n  = q + l , q + 2 ,  ...) 

respectively. Here p and q - p  are some non-negative integers, and a,, b,, d, ,  p and 
B, are some positive constants, which depend upon a2 as well as the basic flow. 
Further, the asymptotic relation (c) is valid in general as a2 -+ 00 or as n -+ 00. 

(ii) If the minimum Urn occurs at a wall (and the shear there is non-zero, i.e. 
UA + 0) then 95 gives 

Urn-cn N d,(P-B,) as p+ B, (n  = 1,2 ,  ...). 

Special cases, not considered here, arise if Uh = 0 a t  a minimum within the domain 
of flow or if Uk = 0 at a minimum a t  a wall. 

The examples of $6  may be used to put flesh on to the bones of these asymptotic 
relations. In fact, one may make a good qualitative sketch of the graphs of c, against 
/3 for various values of a2 and n using little more than the universal results 
summarized in the previous paragraph but one. The results as p + co are essentially 
those for classic Rossby waves, because the influence of the basic flow is weak. 
Another important fact to note is that  the results as c f Urn are essentially the same 
for all members of each of the two broad classes of basic velocity profiles ( i )  and (ii),  
i.e. those whose minimum velocity occurs between the walls and those whose 
minimum occurs at a wall. This is because the proximity of a singularity to the domain 

~ 
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of flow implies that  the problem, physically and mathematically, is dominated by 
the local structure of the disturbances near the latitude where the basic zonal velocity 
attains its minimum value. 

It should not be forgotten that the properties of the modified Rossby waves are 
of little physical importance when the basic flow is unstable. Thus, for example, the 
waves calculated in $6.2 would be swamped by barotropic instability or turbulence 
i f @  were less than one. 

The treatment of the problem of this paper has wider connotations. There are many 
similar problems with similar properties deducible by similar means (see e.g. Drazin 
& Howard 1966). I n  particular, the analogous problem of Rossby-Haurwitz waves 
on a sphere has been considered by Dikiy & Katayev (1971), some of whose results 
anticipate ours. Also the work of Bell (1974), Banks, Drazin & Zaturska (1976) and 
Leibovich (1979) on the analogous problem of internal gravity waves is similar. It 
is noteworthy, however, that the singularity in the problem of internal gravity waves 
differs, so that the case of a simple minimum of the velocity profile within the domain 
of flow is most similar to that of a minimum at a wall in Banks et al. Indeed, the 
two problems, of Rossby waves and of internal gravity waves, are archetypal of the 
two types of singularities, according to whether terms in (U-c)-l or ( U - C ) - ~  
respectively arise in the wave equation of perturbations of a parallel shear flow. For 
these reasons one may conjecture that the methods of the present paper may be useful 
for solving many other problems, although the results may differ in detail. 

We are grateful to Dr J. D. Pryce for making available to us his excellent computer 
program DO2KEF in advance of its provision by NAG. We (D. N. B. and S. A. C.) 
thank the S.E.R.C. for research studentships held during the course of our work for 
this paper. 
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